6,131 research outputs found

    Critical Casimir Forces in Colloidal Suspensions

    Full text link
    Some time ago, Fisher and de Gennes pointed out that long-ranged correlations in a fluid close to its critical point Tc cause distinct forces between immersed colloidal particles which can even lead to flocculation [C. R. Acad. Sc. Paris B 287, 207 (1978)]. Here we calculate such forces between pairs of spherical particles as function of both relevant thermodynamic variables, i.e., the reduced temperature t = (T-Tc)/Tc and the field h conjugate to the order parameter. This provides the basis for specific predictions concerning the phase behavior of a suspension of colloidal particles in a near-critical solvent.Comment: 29 pages, 14 figure

    Polymer depletion effects near mesoscopic particles

    Get PDF
    The behavior of mesoscopic particles dissolved in a dilute solution of long, flexible, and nonadsorbing polymer chains is studied by field-theoretic methods. For spherical and cylindrical particles the solvation free energy for immersing a single particle in the solution is calculated explicitly. Important features are qualitatively different for self-avoiding polymer chains as compared with ideal chains. The results corroborate the validity of the Helfrich-type curvature expansion for general particle shapes and allow for quantitative experimental tests. For the effective interactions between a small sphere and a wall, between a thin rod and a wall, and between two small spheres quantitative results are presented. A systematic approach for studying effective many-body interactions is provided. The common Asakura-Oosawa approximation modelling the polymer coils as hard spheres turns out to fail completely for small particles and still fails by about 10% for large particles.Comment: 68 pages, 6 figure

    The column density towards LMC X-1

    Full text link
    We measure the neutral absorption towards the black hole X-ray binary system LMC X-1 from six archival soft X-ray spectra obtained with the gratings and/or CCD detectors on Chandra, XMM-Newton, and Swift. Four spectral models for the soft continuum have been investigated. While the powerlaw model may overestimate NH considerably, the others give consistent results. Taking the lower metalicity of the Large Magellanic Cloud into account, we find equivalent hydrogen column densities of N_H = (1.0-1.3)*10^22 cm^-2, with a systematic dependence on the orbital phase. This variation of the neutral absorption can nearly explain the orbital modulation of the soft X-ray flux recently detected with the All Sky Monitor (ASM) on the Rossi X-ray Timing Explorer (RXTE).Comment: 4 pages, accepted for publication as a Letter in Astronomy and Astrophysic

    THE TIGHT-BINDING APPROACH TO THE DIELECTRIC RESPONSE IN THE MULTIBAND SYSTEMS

    Full text link
    Starting from the random phase approximation for the weakly coupled multiband tightly-bounded electron systems, we calculate the dielectric matrix in terms of intraband and interband transitions. The advantages of this representation with respect to the usual plane-wave decomposition are pointed out. The analysis becomes particularly transparent in the long wavelength limit, after performing the multipole expansion of bare Coulomb matrix elements. For illustration, the collective modes and the macroscopic dielectric function for a general cubic lattice are derived. It is shown that the dielectric instability in conducting narrow band systems proceeds by a common softening of one transverse and one longitudinal mode. Furthermore, the self-polarization corrections which appear in the macroscopic dielectric function for finite band systems, are identified as a combined effect of intra-atomic exchange interactions between electrons sitting in different orbitals and a finite inter-atomic tunneling.Comment: 20 pages, LaTeX, no figure

    Beam Dynamics Study of a Cooling Experiment based on the 88 MHz CERN Cooling Channel

    Get PDF
    This note presents a beam dynamics analysis of a possible muon cooling experiment based on 88 MHz cavities. The proposed set-up is a subsection of the cooling channel in the CERN reference scheme for a neutrino factory. We present two different set-ups using 8 and 4 cavities. For each of these set-ups we have carried out a beam dynamics study based on engineering designs for the cavities and solenoids. The study includes a parameter scan which allows to evaluate the performance of the systems for various input beam parameters and settings

    Spectroscopy of the stellar wind in the Cygnus X-1 system

    Get PDF
    The X-ray luminosity of black holes is produced through the accretion of material from their companion stars. Depending on the mass of the donor star, accretion of the material falling onto the black hole through the inner Lagrange point of the system or accretion by the strong stellar wind can occur. Cygnus X-1 is a high mass X-ray binary system, where the black hole is powered by accretion of the stellar wind of its supergiant companion star HDE226868. As the companion is close to filling its Roche lobe, the wind is not symmetric, but strongly focused towards the black hole. Chandra-HETGS observations allow for an investigation of this focused stellar wind, which is essential to understand the physics of the accretion flow. We compare observations at the distinct orbital phases of 0.0, 0.2, 0.5 and 0.75. These correspond to different lines of sights towards the source, allowing us to probe the structure and the dynamics of the wind.Comment: conference proceeding from Integral/Bart Workshop Karlsbad, CZ, 14.4-18.4 201

    Modified critical correlations close to modulated and rough surfaces

    Get PDF
    Correlation functions are sensitive to the presence of a boundary. Surface modulations give rise to modified near surface correlations, which can be measured by scattering probes. To determine these correlations, we develop a perturbative calculation in deformations in height from a flat surface. The results, combined with a renormalization group around four dimensions, are also used to predict critical behavior near a self-affinely rough surface. We find that a large enough roughness exponent can modify surface critical behavior.Comment: 4 pages, 1 figure. Revised version as published in Phys. Rev. Lett. 86, 4596 (2001
    corecore